Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Chemist to Use NSF Grant to Bolster Study of Materials Chemistry, Nanoscience

Monday, July 21, 2014, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A chemist in the College of Arts and Sciences has received a major grant to study the synthesis of stainless nanoparticles.

Mat Maye

Mathew Maye (Photo courtesy of Brookhaven National Laboratory)

Mathew M. Maye, associate professor of chemistry, has been awarded a three-year, $360,000 grant from the National Science Foundation (NSF). The award supports his ongoing work with metal stainless alloy nanostructures, the results of which may impact gas storage, heterogeneous catalysis and rechargeable lithium-ion batteries.

Maye’s approach is novel, in that he is attempting to chemically synthesize nanoparticle alloys that resemble steel and stainless steel.

“We’re all aware of the basic properties of stainless steel,” says Maye, citing shiny, rust-resistant kitchen metal surfaces as an example. “At the nanoscale, this rusting—or oxidation, as it’s called—is difficult to stop. By synthesizing stainless interfaces, we hope to better protect nanoparticles from oxidation.”

An alloy is a mixture of metals whose properties are different from those of its individual elements. When carbon is added to iron, the result is steel that is strong and hard. Mix in chromium and nickel, and the steel becomes stainless, or rust-proof.

Maye’s work utilizes nanoparticles that contain iron cores and thin shells, the latter of which are made up of chromium, nickel, aluminum or titanium. He has developed the chemistry to produce these materials, which are then exposed to heat and oxygen, allowing for control of alloying and oxidation.

Maye says that, like any good project, the new materials’ properties were discovered by taking a novel approach.

“Our preliminary studies showed that a nanometer-thin layer of oxide can be used to protect the nanoparticle, while providing a new mechanism to control nanoparticle structure and reactivity,” says Maye, whose research team includes postdoctoral fellows, as well as graduate and undergraduate students. “As a result, we can make atomic to nanoscale voids, which are holes in the particle about the size of a molecule. These voids can be used to trap and store gas, such as carbon dioxide, and to serve as electrodes in lithium-ion batteries.”

Maye says the goal of the NSF project is three-fold: to develop “wet-chemical” synthesis strategies to prepare the alloy nanomaterials; to understand their oxidation and phase behavior; and to use such behavior to construct novel structures.

“We’re really excited about NSF’s support,” he says. “The grant allows my team to prepare materials that have not been made before and to uncover important fundamental science related to nano alloys.”

In addition to underwriting research, the NSF grant will serve a broader impact by supporting an annual workshop that brings together regional leaders in nanoscience. The first such “Upstate Nano” workshop will take place next summer at Syracuse University.

“There is some tremendous nanoparticle research going on in the region,” Maye says. “The workshop will enable creative researchers to discuss ideas, while exposing students to the novel science and great potential of our field.”

  • Author

Rob Enslin

  • Recent
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.