Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Rachel Steinhardt Awarded NSF Grant to Study Brain Chemistry

Friday, December 1, 2023, By News Staff
Share
BioInspiredCollege of Arts and SciencesResearch and Creative

Rachel Steinhardt, assistant professor in the Department of Chemistry, has been awarded a CAREER grant from the National Science Foundation for her project, Chemical Tools for Bio-Orthogonal Neuromodulation.

One of the most perplexing challenges in neuroscience is how to explain the brain’s ability to learn and change itself. This function of the brain enables a large slate of behaviors and mental states, including sleeping, wakefulness, mood and attention. And while it’s understood that connections between cells are at the heart of this neural activity, how those connections work, change and fuel these behaviors remains a mystery.

Rachel Steinhardt

Rachel Steinhardt

This project aims to better understand how individual cells communicate to create brain activity. The Steinhardt Lab will probe two key chemicals involved in this phenomenon—dopamine and serotonin. Steinhardt’s team will examine the chemicals’ molecular behavior to better understand how they fuel the neural activity that drives brain functions like sleep, learning and memory.

Conventional imaging tools like MRIs can’t offer adequate insights into this process because they don’t capture the smallest scale of neural activity. So, Steinhardt will develop and use new tools that will allow her to specifically investigate the molecular level of the brain, which will enable her to make discoveries that wouldn’t be possible through traditional imaging methods. These innovative chemical tools will include genetically engineered molecules and light that can stimulate individual cells and illuminate key molecular interactions that are involved in certain neural activity.

While conventional methods examine neural activity by focusing on the brain as a whole, this bottom-up experiment will look at individual cells to make discoveries about how the neural network functions. This research project should help build a fundamental understanding of how serotonin and dopamine control different behavior, including sleep, mental illness and addiction. This fundamental science could be applied to things like more effective treatments for mental illness. Some of Steinhardt’s other research focuses on the molecular chemistry of conditions like post-traumatic stress disorder.

This story was written by Emily Halnon.

  • Author

News Staff

  • Recent
  • Jorge Morales ’26 Named a 2025 Beinecke Scholar
    Friday, June 20, 2025, By News Staff
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.