Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Physicist Awarded 2 NIH R01 Grants for Cutting-Edge Biosensor Design Work

Tuesday, November 14, 2023, By Dan Bernardi
Share
College of Arts and SciencesNational Institutes of HealthResearch and Creative

The National Institutes of Health’s R01 grants are among the organization’s oldest and most prestigious awards presented to investigators conducting biomedical research. With only around a 20% success rate per application, receiving just one of these highly selective grants in a year, which provide support for up to five years, is a notable accomplishment for any faculty member. It is extremely rare to receive two R01 awards in the same year and is a feat that has not occurred at Syracuse University in the recent past.

Liviu Movileanu

Professor Liviu Movileanu

Liviu Movileanu, professor of physics in the College of Arts and Sciences, was recently awarded a pair of R01 awards through the NIH’s Institute of Biomedical Imaging and Bioengineering and Institute of Medical Sciences totaling $3 million. The grants support his ongoing work to develop a generalizable nano-sized sensor capable of detecting proteins with high sensitivity and specificity. These nano-sensors could one day allow researchers to identify biomarkers for cancers and other diseases in complex biofluids.

These aren’t the first major NIH awards for Movileanu, who has been a professor at Syracuse since 2004. A $1.2 million grant resulted in a pivotal paper published earlier this year in Nature Communications, which formulated a nanopore sensor design architecture that can be applied to a broad range of protein targets.

To conceptualize a nanopore sensor, think of it like a “hook and bait.” A tiny protein binder acts as the hook and fuses to a small hole created in the membrane of a cell—known as a nanopore—which allows ionic solution to flow through it. When the sensor recognizes a targeted molecule, the ionic flow changes signaling that the biomarker has been found—like an angler hooking a fish.

Movileanu’s $1.4 million grant, titled “Development of Modular Synthetic Sensors for Protein Biomarker Detection,” will involve the development, optimization and validation of a next-generation class of sensing elements for targeted protein biomarker detection at single-recognition event precision.

Nanopore sensor graphic

Graphic illustrating three distinct protein binders attached to the same nanopore. Such modular nanostructures form three individual sensors to detect three target proteins. Because only a tiny part of the binder is altered for a target protein, this nanopore is generic for a broad spectrum of targets. (Image courtesy of Mohammad Ahmad)

Proteins interact with each other on a one-on-one basis to carry out various jobs in the cell. When one protein “captures” another protein, it is known as a protein recognition event. Capture and release events of one protein by another are part of a reversible (transient) process within the cell that can take from a few microseconds to tens of seconds. When the interaction is too short or too long, it can result in perturbations in the chemical traffic inside the cell. Movileanu explains that through this grant, they hope to design tiny sensors to monitor these captures and releases in real-time and at the single-molecule level.

“We will utilize advanced protein engineering and single-molecule technologies to explore further advantages and shortcomings of nanopore sensors, yet with an emphasis on those chemicals that are amplified in the blood stream or other complex biofluids under disease-like conditions such as solid tumors or hematological malignancies,” says Movileanu.

To address upcoming fundamental challenges regarding detection of proteins at low numbers, the team will utilize a mechanism to amplify the sensor’s signal. The proposed design will also discriminate proteins with similar structures but different functional features, essentially weeding out protein look-alikes. Lastly, their study will identify subpopulations of similar proteins with different functional roles, which is challenging using existing technologies.

While the first grant is focused on developing a broad range of sensor structures, compositions, architectures and functions with a long-term goal of highly sensitive biomarker detection, the second $1.6 million grant will be exclusively focused on developing nanopore sensors for various classes of kinases, which offer strategic drug targets that have critical implications in numerous cancers. Titled “Generalizable Nanosensors for Probing Highly Specific Interactions of Protein Kinases,” this research will involve tuning nanopore sensors to identify and quantify a significant group of kinases.

Kinases are protein enzymes that facilitate a phosphate-transfer reaction known as phosphorylation, one of many mechanisms by which proteins are chemically modified after they are produced in the cell. Phosphorylation processes are involved in key cellular activities and functions, including cell growth, differentiation and cycle, as well as intracellular and intercellular signaling.

According to Movileanu, abnormal deviations in phosphorylation pathways result in profound molecular disturbances in signaling, ultimately leading to numerous cancers, diabetes and neurological diseases.

“Kinases are the most extensively studied molecular machines that regulate chemical modifications of proteins,” says Movileanu. “Because kinases are molecular machines at the heart of cellular functions, their functional features are critical under physiological and disease-like conditions.”

With this grant, the team will seek a better quantitative and mechanistic understanding of kinases which could uncover essential knowledge of how a disease state progresses through various phases. Their generalizable and highly specific nanosensors can also help address current challenges preventing the use of numerous kinase-targeted drugs already approved by the FDA.

In the future, Movileanu says this nanosensor technology may take the place of imaging and biopsies when diagnosing cancers. By integrating the sensors into nanofluidic devices, this machinery would allow scientists to test for many different biomarkers at once in a specimen, providing a fundamental basis for biomarker detection in complex biofluids such as blood.

  • Author

Dan Bernardi

  • Recent
  • Auxiliary Services Announces Next Steps in Office Refreshment, Vending Transitions
    Thursday, August 14, 2025, By Jennifer DeMarchi
  • Whitman School Names Julie Niederhoff as Chair of Marketing Department
    Wednesday, August 13, 2025, By Caroline K. Reff
  • Syracuse Stage Announces Auditions for 2025-26 Theatre for the Very Young Production ‘Tiny Martians, Big Emotions’
    Wednesday, August 13, 2025, By Joanna Penalva
  • 5 Things to Know About New Student Convocation Speaker Andrea-Rose Oates ’26
    Wednesday, August 13, 2025, By John Boccacino
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.