Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

The Physics Behind Tissue Flow in the Embryo

Tuesday, June 2, 2020, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesResearch and CreativeSTEM
M. Lisa Manning portrait

Lisa Manning

A group of physicists from Syracuse University recently teamed up with researchers from Columbia University’s Department of Mechanical Engineering to study the developing tissue flow in an embryo that has many similar genes and cell behaviors to that of a human—the fruit fly (Drosophila).

As embryos develop, their tissues flow and reorganize dramatically on timescales as brief as minutes, narrowing and extending along their axes as the cells move. Combining experimental studies in the fruit fly embryo at Columbia with modeling approaches at Syracuse, the group determined that the shapes and alignment of cells within tissues can help to predict how tissues change shape during development.

These results may reveal fundamental mechanisms about human development and how abnormalities in developing tissue can result in birth defects. The team’s research paper, Anisotropy links cell shapes to tissue flow during convergent extension, was recently published in the prestigious journal “Proceedings of the National Academy of Sciences of the United States of America” (PNAS).

The team from Syracuse University included the study’s co-author, Lisa Manning, the William R. Kenan, Jr., Professor of Physics and founding director of BioInspired Syracuse: Institute for Material and Living Systems, postdoctoral researcher Matthias Merkel, former postdoctoral associate Gonca Erdemci-Tandogan and former student Leo Sutter, who was part of the Research Experiences for Undergraduates (REU) program. The group from Columbia was led by Principal Investigator Karen Kasza, Clare Boothe Luce Assistant Professor of Mechanical Engineering.

“Working with Professor Kasza’s group, we were really able to nail down precisely how changes to cell shapes drive changes to tissue mechanics,” says Manning. “It is amazing that we can now just look at a snapshot of cell shapes in the fruit fly and predict how cells will move.”

Read more about the collaboration between Syracuse University and Columbia University.

  • Author

Dan Bernardi

  • Recent
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.