Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

SU researchers utilize computer simulations to explore biofilm fragmentation

Monday, September 20, 2010, By News Staff
Share
Research and Creative

Syracuse University’s Radhakrishna Sureshkumar, professor and chair of the Department of Biomedical and Chemical Engineering in the L.C. Smith College of Engineering and Computer Science (LCS), and professor of physics in The College of Arts and Sciences, has been awarded a three-year, $426,290 grant by the National Science Foundation (NSF) to investigate how biofilms deform and break up under mechanical stress. Biofilms are colonies of bacterial microorganisms that build up on surfaces and usually result in damage, decay or inefficiencies.

biofilmWhen planktonic or swimming bacterial microorganisms attach themselves to a surface, they secrete polysaccharides, creating a matrix of slimy polymers. There are numerous types of biofilms that are created by different phenotypes of bacteria. One bacterial type is responsible for the plaque that builds up on teeth, while another type builds up on the surface of Navy vessels, which creates additional drag and power loss as they sail through the seas. Bacteria can also colonize in arteries and lungs, leading to life-threatening infections. Biofilms are extremely resistant to antibiotics, as compared to planktonic bacteria.

Sureshkumar, in collaboration with the engineering and medical schools at the University of Michigan, Ann Arbor and the University of Colorado, Boulder will be utilizing innovative computer simulations to understand at the molecular level the mechanical properties, or biomechanics, of different phenotypes of bacteria. The team will be studying the genetic makeup of the organism and how it relates to the mechanical properties of the type of biofilm it creates.

This project is a cross-disciplinary and collaborative effort to explore biofilms. The SU team of Sureshkumar and research assistant professor Shikha Nangia will be exploring biofilms through computer simulations. Simultaneously, David Bortz of the University of Colorado will be examining biofilms through mathematical modeling. Mike Solomon and John Younger of the University of Michigan will be performing experiments in the same area.

The goal is to provide a transformative understanding of how the complex system of biofilms responds to mechanical stimulus, such as the one resulting from arterial blood flow. The team will utilize the fundamental insights gleaned from the study to develop efficient therapeutic routes to treat bacterial infection.

“I am very pleased that the parallel computer cluster that will be the primary workhorse for this project is housed in SU’s Green Data Center,” says Sureshkumar. “Further, through a mutual agreement to share laboratory resources, we will leverage the computational facilities at the Brookhaven National Laboratory that have been made available to SU faculty. Such state-of-the-art facilities are critical to the success of cyber-enabled discovery and innovation.”

The LCS team of researchers led by Sureshkumar includes Nangia, graduate student Rui Li and undergraduate student Adina Dragici.

  • Author

News Staff

  • Recent
  • Syracuse University 2025-26 Budget to Include Significant Expansion of Student Financial Aid
    Wednesday, May 21, 2025, By News Staff
  • University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy
    Wednesday, May 21, 2025, By News Staff
  • Engaged Humanities Network Community Showcase Spotlights Collaborative Work
    Wednesday, May 21, 2025, By Dan Bernardi
  • Students Engaged in Research and Assessment
    Tuesday, May 20, 2025, By News Staff
  • Syracuse Views Summer 2025
    Monday, May 19, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.