Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

LCS’s Heng Yin awarded NSF grant to fight against malicious code

Tuesday, September 7, 2010, By News Staff
Share
Research and Creative

It is a notable achievement to receive a National Science Foundation (NSF) grant.  It is a rare and laudable achievement to receive an NSF grant on the first attempt and as a first-year professor who completed a doctorate degree less than a year ago.  Yet, that is exactly what Heng Yin, assistant professor of computer science in the L.C. Smith College of Engineering and Computer Science has accomplished.  

yinAfter completing his Ph.D. in 2009, Yin went straight to work preparing his grant proposal, “Mining Operating System Semantics: Techniques and Applications.”  For this proposal, Yin has received a $427,000 grant from the NSF to fight against malicious code.  

“Previously I have conducted considerable research on understanding and detecting malicious code,” says Yin.  “In this proposal, I switched the analysis target, which is the operating system to be protected against malicious code.” 

Operating systems manage hardware resources and provide a higher-level environment for user applications. Operating systems play a central role in computer systems, especially with respect to security and trustworthiness. The growing focus around security makes it crucial to have in-depth knowledge about inner workings of an operating system.  

Researchers look to track and analyze events such as: what processes are active in the system, which process is currently running, what modules are loaded into a specific process, which files are opened by a process and which network connections have been established. The knowledge about operating system semantics is the foundation for many computer security applications, such as virtual machine introspection, malware detection and analysis and computer forensics. 

However, the existing techniques for obtaining the operating system semantics fall short. They perform static analysis on the operating system source code, and thus cannot be applied to the closed-source operating systems (e.g., MS Windows). The source code analysis also suffers from the WYSINWYX (i.e., What You See Is Not What You eXecute) problem. Furthermore, the obtained semantics knowledge can be easily compromised by various attacks. With such an unsound foundation, the functionality and trustworthiness of these security applications become questionable. 

Yin will work over the next three years to build a novel analysis framework to fortify this base knowledge of code analysis. This analysis framework aims to automatically extract the operating system semantics simply from the binary distribution of an operating system and capture invariants, areas of constancy, among these semantics. 

The benefit of this framework is that it is binary-centric, and therefore can deal with closed-source operating systems. The identified invariants can also help derive trustworthy semantics knowledge, so various forgery attacks can be detected and thwarted. With this proposed analysis framework, Yin will further investigate how to strengthen the functionality and robustness of several key security applications, including virtual machine introspection, rootkit defense and live memory forensics. 

“By analyzing the operating system instead of individual malware instances, we may come up with better defense mechanisms that can defeat entire classes of malware attacks even before new malware attacks are launched,” says Yin.

  • Author

News Staff

  • Recent
  • Harnessing Sport Fandom for Character Development: Grant Supports Innovative Initiative
    Monday, September 1, 2025, By Wendy S. Loughlin
  • What’s New at Campus Dining in Fall 2025?
    Friday, August 29, 2025, By Jennifer DeMarchi
  • DPS Pilots License Plate Reader Technology to Enhance Campus Safety
    Friday, August 29, 2025, By Kiana Racha
  • IDJC Welcomes Fall 2025 Visiting Fellows Nathaniel Rakich and Miranda Spivack
    Friday, August 29, 2025, By Genaro Armas
  • Libraries Announces Fall 2025 Workshops
    Friday, August 29, 2025, By Cristina Hatem

More In STEM

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Discovering How and When Stuff Fails Leads to NSF Grant

When materials are forced into new shapes, a tipping point can shift them from flexibility and resilience to failing or breaking. Understanding that tipping point is at the core of Jani Onninen’s research. He has received a three-year grant from…

A&S Scientists Explore Protein Droplets as a New Way to Understand Disease

When we are young and healthy, our cells successfully monitor and manage our worn-out or damaged proteins, keeping things working properly. But as we age, this cleanup system can falter, leading to protein clumps linked to neurodegenerative diseases such as…

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.