Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Students Design 3D Metal Printer for GE

Wednesday, June 7, 2017, By Alex Dunbar
Share
College of Engineering and Computer ScienceStudents

Commercial 3D printers commonly use thin layers of a material, often a polymer, to construct computer-aided designs or scanned models. Using metal in 3D printing has also become possible using certain types of industrial printers. This process is also known as additive manufacturing. Parts and components made out of aluminum, steel, brass, copper, titanium and other metals can be printed using fine particles of metal powder.

Students design 3D metal

Mechanical and aerospace engineering students Advin Zhushma, left, and Colin Hofer present information about the system they designed to use metal powders within a 3D printed part.

The demand for metal 3D printed parts is increasing, but current printers are expensive and are generally limited to using one metal powder at a time. Syracuse University mechanical and aerospace engineering students Advin Zhushma ’17, Colin Hofer ’17, Jeffrey Clark ’17, Alejandro Valencia ’17, Geoffrey Vaartstra ’17, Ruiquing Yin ’17, Bryan Morris ’17, Carter Kupchella ’17 and Joshua Beckerman ’17 worked with the General Electric (GE) Global Research Center to design and prototype a system that can use multiple materials at the same time. The teams designed it as their senior design capstone project, an opportunity made possible by Joseph Vinciquerra (’00, G’02) at GE.

Their printer demonstrates one possible way for depositing different metal powders within a 3D printed part. The students say using multiple materials may one day reduce production time and allow for printed parts that weigh less than traditionally machined materials. Testing also showed the students’ concept could eventually be used to make components previously considered unbuildable.

“You can do different patterns within one layer,” says Zhushma. “It allows you to use materials of one property where you need it and materials with other properties elsewhere. Parts can have the same performance but be a lot lighter.”

Hofer and Zhushma say the emergence of additive technology could allow for mass production of metal parts like never before.

“We’ve never had the opportunity to optimize the geometry of parts without the necessity of extensive milling of materials,” says Hofer.

The students presented their research and a functioning prototype to GE. They hope current and future SU students will continue to look at ways to make 3D printing more efficient and affordable.

“There is a lot of research to be done on materials and metal alloys in particular,” says Hofer. “We’re happy that GE has given SU students the opportunity to contribute to this exciting technology field.”

Vinciquerra, principal engineer and technology platform leader for additive materials at GE Global Research comments, “Working with the students throughout the semester—watching them take an idea through detailed design and then ultimately producing a working prototype—was mutually exciting. These are real-world technology efforts in a fast-moving landscape, and it was great to be able to bring the senior MAE class along for the ride.”

  • Author

Alex Dunbar

  • Recent
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.