Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Multidisciplinary Team Wins NSF Award to Study Distributed Energy Markets

Friday, October 14, 2016, By J.D. Ross
Share
afasdfsadfasdf

Researchers from four schools and colleges at Syracuse University are researching two-way, distributed energy market designs.

As the traditional, centralized way of producing and distributing electricity gives way to a future of decentralized, “smart” energy production and consumption, policymakers, producers and regulators must understand the security and privacy risks inherent in “distributed” energy production and in encouraging consumers to better manage, even produce, their own energy.

That’s why an interdisciplinary team of Syracuse University cybersecurity, engineering, economics and law experts, led by School of Information Studies (iSchool) faculty member Jason Dedrick, are conducting research into various “two-way, distributed” energy market designs to assess potential security and privacy risks inherent in each, and the trade-offs between reducing risk and optimizing market performance.

researchers

Funded with a $344,184 grant from the National Science Foundation, the team is drawn from the iSchool, the College of Engineering and Computer Science, the Maxwell School of Citizenship and Public Affairs and the College of Law. It will employ mixed methods to conduct the market assessment, including interviews, market structure and data flow modeling, simulations using real world electricity use data and security threat analysis.

“In the ‘smart grid,’ electricity and information will flow back and forth among households, businesses and small producers,” explains Dedrick, Professor of Information Systems and the project’s principal investigator (PI). “Consumers will be able to create their own power and sell it back to the grid, while information about demand, supply and performance will flow to and from appliances, electric cars and solar cells and other local generators.”

But, observes Dedrick, there are significant risks associated with the two-way, distributed smart grid. Networked appliances could be vulnerable to cyber attacks. High-speed, decentralized electricity trading will make it harder to identify fraud. And there might be opportunities for market manipulation, privacy breaches and even physical damage to the national infrastructure.

“The wide range of new participants and devices in a two-way, distributed smart grid creates many new cybersecurity vulnerabilities. Our goal in this project is to determine the degree of vulnerability of different market configurations and to identify resilient approaches,” says Co-PI Professor Peter Wilcoxen, Director of the Center for Environmental Policy and Administration at the Maxwell School. “Our research focuses on the different effects of privacy, security and integrity measures on the operation of the grid and energy markets, including impacts on the stability of the gird, the privacy of participants and the trustworthiness of the market—that is, can participants be confident that payments are fair and that prices are not overly volatile?”

The results of this two-year project will provide guidance to policymakers, regulators and market participants so that an effective market can be designed for a two-way, distributed smart grid, one that incorporates necessary security and privacy protections without burdening the market’s function.

Dedrick will take the lead in collecting data on current and planned distributed energy markets and security policies, while Wilcoxen will lead the development, testing and analysis of market simulation models. Cybersecurity risks will be analyzed by Co-PI Steve Chapin, associate professor of computer science in the College of Engineering and Computer Science; and Keli Perrin, assistant director of the Institute for National Security and Counterterrorism, will draft privacy impact assessments for proposed markets.

  • Author

J.D. Ross

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.