Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

The Building Blocks of Future Smart Materials

Wednesday, September 25, 2024, By News Staff
Share
BioInspiredCollege of Arts and SciencesDepartment of Physicsfacultyresearch

How do cells take the shape they do and perform their functions? The enzymes and molecules that make them up are not themselves living—and yet they are able to adapt to their environment and circumstances, come together and interact, and ultimately, create life. How exactly all of that happens involves some very big questions, the answers to which will be crucial in paving the way for new biotechnologies and other advancements.

The Alfred P. Sloan Foundation, a private, nonprofit grantmaking organization, started its Matter to Life program to begin to answer some of them. The program’s stated goal is “To sharpen our scientific understanding of the physical principles and mechanisms that distinguish living systems from inanimate matter, and to explore the conditions under which physical principles and mechanisms guide the complexification of matter towards life.”

To that end, the program awarded Jennifer Ross (left) and Jennifer Schwarz (right), professors in the Department of Physics in the College of Arts and Sciences and members of the BioInspired Institute, a three-year grant to explore what they’ve described as a fundamental unanswered question about the functionality of cells and the energy and entropy landscape of cell interiors.

Two women smile while posing for headshots as part of a composite photo.

Jennifer Ross (left) and Jennifer Schwarz, professors in the Department of Physics, received a three-year grant from the Alfred P. Sloan Foundation’s Matter to Life program.

“There is a lack of quantitative understanding of the principles governing the non-equilibrium control knobs inside the cell,” Ross and Schwarz explained in their proposal. “Without this knowledge, we will never understand how cells work, or how we can replicate them in synthetic materials systems.”

They’ve chosen to focus their work on one very particular aspect of the biology of cells, the concentrations of protein molecules within them known as protein condensates, and specifically their liquid-liquid phase separation, which they describe as the “killer app” for the sculpting of energy and entropy in the cell.

“Liquid-liquid phase separation is when two liquids separate, like oil and water,” Ross says. “The proteins separate out [into droplets] and make what we think of as membrane-less organelles. We’re interested in how both energy-using systems and entropy-controlling systems can help to shape those organelles.”

They’re hoping to gain an understanding of how cells self-organize without a “manager”—in this case, a membrane to act as a physical containment system—as well as how they react and adapt to their environment.

“This droplet formation is so sensitive to temperature and its surroundings,” says Schwarz. “The cell knows, ‘A ha!’ The temperature is increasing, so the environment is slightly different. So…I’m going to adapt.”

Ross is serving as principal investigator, and with graduate student assistance, will be performing reconstitution experiments to explore these processes, while co-principal investigator Schwarz and her team will be delving into the theoretical side of the science using predictive simulations. The three-year grant will also fund a paid undergraduate and two local high school students through summer programs.

The hope is that a better understanding of cell behavior at this level could ultimately lead to breakthroughs in the development of smart synthetic materials. “Imagine a road-paving material that could identify when a pothole develops and heal itself,” Ross says.

It’s just one example of countless possibilities for learning from biological systems.

Story by Laura Wallis

  • Author

News Staff

  • Recent
  • Meet Michael Bunker, the New Leader of Campus Safety and Emergency Management Services
    Tuesday, August 5, 2025, By Kiana Racha
  • Rethinking Research Through Visual Storytelling
    Tuesday, August 5, 2025, By Dan Bernardi
  • A Legacy of Caring: Robin Berkowitz-Smith’s 38-Year Journey at Syracuse University
    Tuesday, August 5, 2025, By Kelly Homan Rodoski
  • Syracuse University and University of Bergen Host Transatlantic Alliance for Law, Outreach and National Security Conference
    Monday, August 4, 2025, By Robert Conrad
  • National Grid Summer College Scholars Program Invests in Energy Literacy
    Thursday, July 31, 2025, By Hope Alvarez

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.