Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Physics World

Lifetime Expectancy May be Longer Than What We Expected

Saturday, September 8, 2018, By Essence Britt
Share
College of Arts and SciencesPhysicsResearch and Creative

Steven Blusk, professor of physics in the College of Arts and Sciences, was quoted in the Physics World story “Charmed baryon puzzles particle physicists by living longer.”

Blusk and others have taken the time to remeasure the charmed baryon. The researchers found that lifetime is actually four times longer compared to the average previous measurements. Finding the discrepancies between the two measurements can lead to better theoretical understanding of quark structure and interaction say the researchers.

Blusk says it is unclear where the discrepancy comes from, or which experiments are correct. He adds, “I’d rather not speculate. It’s very hard to go back to a paper from 20 years ago and try to figure out if they did anything wrong.”

The newly found measurement “should really get people thinking about how to make the theory more precise,” says Blusk.

Blusk recommends where theorists need to start, he says that theorists need to figure out the magnitude of a phenomenon called Pauli interference, which affects the lifetime.

Blusk says that the LHCb collaboration plans to re-measure the lifetime, based on Ωc0 particles directly produced in proton collisions. Although the signals from these particles will have about 40 times more noise, the measurement has different systematic biases and this could lead to a better understanding of what the actual lifetime is.

Read Full Article
  • Recent
  • Arts and Sciences Hosts Inaugural Scholarship and Research Gala
    Friday, May 9, 2025, By Sean Grogan
  • Chancellor Kent Syverud Honored as Distinguished Citizen of the Year at 57th Annual ScoutPower Event
    Thursday, May 8, 2025, By News Staff
  • New Maymester Program Allows Student-Athletes to Develop ‘Democracy Playbook’
    Thursday, May 8, 2025, By Wendy S. Loughlin
  • From Policy to Practice: How AI is Shaping the Future of Education
    Thursday, May 8, 2025, By Christopher Munoz
  • Kohn, Wiklund, Wilmoth Named Distinguished Professors
    Thursday, May 8, 2025, By Wendy S. Loughlin

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Facebook
  • @SyracuseUNews
  • Youtube
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.