Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit

Physicist Helps Discover Subatomic Particles

Wednesday, November 19, 2014, By Rob Enslin
Share
research
A pink glow illuminates the inside of this model of the LHC beam pipe, which is used to train engineers and technicians. ( Photo by Guillaume Jeanneret/CERN)

A pink glow illuminates the inside of this model of the LHC beam pipe, which is used to train engineers and technicians at CERN. ( Photo by Guillaume Jeanneret/CERN)

A physicist in the College of Arts and Sciences is the lead contributor to the discovery of two never-before-seen baryonic particles. The finding, which is the subject of a forthcoming article in Physical Review Letters (American Physical Society, 2014), is expected to have a major impact on the study of quark dynamics.

Steven Blusk

Steven Blusk

Steven Blusk, associate professor of physics, has identified particles known as Xi_b’- and Xi_b*-. Although the particles had been predicted to exist, nobody had seen them until now. The discovery is part of his ongoing work at the Large Hadron Collider beauty (LHCb) experiment at CERN in Geneva, Switzerland.

“The particles we’ve discovered are quite unique,” says Blusk, a leader in experimental high-energy particle physics. “Each one contains a beauty [b] quark, a strange [s] quark and a down [d] quark.”

A baryon is a subatomic particle made up of three quarks, bound together by strong force. Two other familiar baryons, the proton and neutron, combine with the electron to form all the known elements of the periodic table.

“The building blocks of all known things, including cars, planets, stars and people, are quarks and electrons, which are tied together by strong, electromagnetic forces,” Blusk says.

Unique to each newly discovered particle is its mass, which is approximately six times larger than that of the proton. Blusk attributes its size to the presence of a heavyweight b quark and to the particle’s angular momentum—a property known as “spin.”

In the Xi_b’- state, the spins of the two lighter quarks point in opposite directions; in the Xi_b*- state, they are aligned. The difference is what makes the Xi_b*- a little heavier.

“The Xi_b’- is close in mass to the sum of the masses of its decay products. If it had been just a little lighter, we wouldn’t have seen it at all,” Blusk adds.

Much of Blusk’s work draws on the theory of Quantum Chromodynamics, which describes the interaction of quarks. As a result, he and his colleagues have studied the masses of both particles, along with their relative production rates, widths and decays.

“This is a very exciting result,” Blusk adds. “Thanks to LHCb’s excellent hadron identification, which is unique among LHC experiments, we’ve been able to separate a clean, strong signal from the background. It demonstrates, once again, both the sensitivity and precision of the LHCb detector.”

Blusk is part of a team of Syracuse researchers, led by Distinguished Professor of Physics Sheldon Stone, working at CERN, which is the world’s leading laboratory for particle physics. There, they have been involved with the LHCb experiment, which seeks to identify new forces and particles, in addition to those already known and codified in the Standard Model, a theory describing the physical makeup of the visible Universe.

“Fourteen billion years ago, the Universe began with a bang, and matter and anti-matter were formed,” Stone says. “But just one second after the Big Bang, anti-matter all but disappeared. … The LHCb experiment is designed to find out what really happened after the Big Bang that has allowed matter to survive and build the Universe we inhabit today.”

  • Author

Rob Enslin

  • Recent
  • Eight New Recruits Begin Campus Peace Officer Academy
    Thursday, May 19, 2022, By Christine Weber
  • Media Tip Sheet: Consequences of China Lockdown
    Thursday, May 19, 2022, By Vanessa Marquette
  • Dean Rajiv ‘Raj’ Dewan to Step Down as Dean of the School of Information Studies
    Thursday, May 19, 2022, By News Staff
  • 2022 Graduates Reflect on Service as Academic Coaches
    Thursday, May 19, 2022, By Ellen de Graffenreid
  • Funding Expands for Newhouse Professors’ Work on Technology to Combat Fake News
    Wednesday, May 18, 2022, By Wendy S. Loughlin

More In Uncategorized

Syracuse Views Spring 2022

We want to know how you experience Syracuse University. Take a photo and share it with us. We select photos from a variety of sources. Submit photos of your University experience using #SyracuseU on social media, fill out a submission…

“Can Supermarket Design Really Impact What You Buy?”

Shelley Kohan, adjunct faculty member in the Whitman School, was interviewed for the VeryWell Mind story “Can Supermarket Design Really Impact What You Buy?” Kohan, a retail executive with 25 years of experience, explained that many grocery stores are following…

“COVID Truthers Have Found a New ‘Pandemic’ to Freak Out About”

Michael Barkun, professor emeritus of political science in the Maxwell School, was quoted in the Daily Beast story “COVID Truthers Have Found a New ‘Pandemic’ to Freak Out About.” Barkun, who is an expert on extremism and conspiracy theories, explained…

“With Elon Musk’s Twitter bid, there’s more at stake than freedom of speech: ‘It gives him a lot more influence over government'”

JM Grygiel, associate professor of communications in the Newhouse School, was quoted in the MarketWatch article “With Elon Musk’s Twitter bid, there’s more at stake than freedom of speech: ‘It gives him a lot more influence over government.’” Grygiel, who…

Koppl writes “Biden Establishes a Ministry of Truth”

Roger Koppl, professor of finance in the Whitman School, co-authored The Wall Street Journal opinion piece “Biden Establishes a Ministry of Truth.” The Department of Homeland Security recently announced the formation of the Disinformation Governance Board. The goal of the…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.