Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Campus & Community
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Campus & Community

Research Computing Renaissance at SU

Monday, March 31, 2014, By Christopher C. Finkle
Share
Research and Creative

Recent developments in Syracuse University’s OrangeGrid and Academic Virtual Hosting Environments (AVHE)—both centrally managed by Information Technology and Services (ITS)—increase the University’s resources for compute intensive academic research, and allow SU’s researchers to tackle new and greater computational tasks, get them done sooner and increase the competitiveness of their grant submissions.

Orange Grid 2-0 logoDavid Rivers, research assistant professor in the Department of Biology in The College of Arts and Sciences, hopes both these entities are expanded and made available to more researchers in need of such facilities. “I can only imagine the need for this kind of computing resource will increase rapidly since large data sets are now common elements of many basic research grants,” says Rivers. “OrangeGrid and AVHE are extremely powerful and useful tools that have made my work much more productive.”

SU’s expanding computing grid, OrangeGrid, now routinely makes more than 10,000 CPU cores available to researchers for overnight processing. This is almost double the number of cores available a year ago. The upgrade to OrangeGrid 2.0 was largely complete in December, gives researchers more ability to push large amounts of data to the grid for use and provides additional controls for steering work to the right resources.

OrangeGrid (formerly known as the HTC campus grid) uses idle desktop computers in offices and student labs across campus to work on data-intensive research operations. Last fall SU received an award from the National Science Foundation (NSF) to facilitate high throughput research computing. Award funds are being used to upgrade the campus’s data network infrastructure and thus increase the productivity of existing OrangeGrid users, and open the grid to a wider range of projects from SU researchers.

Infrastructure upgrades include the acquisition and installation of new equipment that will increase SU’s campus network backbone from 10 Gigabit to 40 Gigabit and upgrade connectivity from the backbone to campus buildings from 1 Gigabit to 10 Gigabit.

The 40 Gigabit connections have all been completed, and the first one was put into production during the week of Feb. 17. These connections will enable OrangeGrid to serve new areas of science and allow researchers at SU to apply more computing time to a wider diversity of scientific work, without impacting daily operations.

Use of OrangeGrid has increased about 20 percent since September, with about five million hours of compute time provided per month. Researchers are taking good advantage of this capacity, including:

  • Sean Sweeney, a graduate student in The College of Arts and Sciences, who is running numerical simulations for his research in condensed matter theory with Alan Middleton, chair and professor in the Department of Physics. Their paper, “Minimal spanning trees at the percolation threshold: a numerical calculation” published in Physical Review E relied heavily on simulations run on OrangeGrid. “Right now I’m simulating shortest paths on two and three-dimensional square lattices in order to study the effects of boundary conditions on disordered systems, which will likely lead to another publication,” says Sweeney. “Much of this work would not be possible without the extreme parallelization offered by OrangeGrid.”
  • Rivers is using OrangeGrid for large-scale BLAST (Basic Local Alignment Search Tool) analysis. “OrangeGrid has allowed me to take large next-generation DNA sequencing datasets from seven species of moth and identify thousands of conserved genes out of millions of comparisons. OrangeGrid took a couple weeks to run my most recent query that would have taken me a year or two to run on a local machine, or I would have had to find an external source to do my analysis,” says Rivers.

OrangeGrid’s steady growth has enabled SU to join the global scientific community and share research computing resources when they are not utilized locally. As a result, 15 million hours of OrangeGrid compute time were spent on research over the last three months, making SU the largest all-time contributor to Einstein@Home, a volunteer computer-crowdsourcing group that uses the processing strength of idle personal or enterprise desktops to search for gravitational-wave emission from neutron stars. OrangeGrid uses the Berkeley Open Infrastructure for Network Computing (BOINC) to contribute to Einstein@Home, and eight other public science projects that pursue research in protein folding, malaria research, number factoring, drug molecular modeling and simulation, long timescale dynamics, and more.

The Academic Virtual Hosting Environment (AVHE) creates a customized cloud for researchers to perform small to moderate computationally intensive research tasks. The initial hardware supporting the AVHE is composed of the resources on campus designated for disaster recovery. When the hardware is not involved in disaster recovery efforts, it is available to the AVHE for academic work. Longer term, as researchers acquire funding for their research, they can purchase compute cycles, memory and disk space dedicated within the AVHE to support their research.

Oriented to support researchers who each need a single sizeable resource they can directly control, the AVHE can run most operating systems and supports a diverse blend of research efforts including SPSS, SAS, STATA, R and 3D rendering:

  • AVHE has been used by Rivers to do the phylogenetic analysis with the output from OrangeGrid. “The AVHE space has allowed me to run parallelized programs for running complex Bayesian comparisons of large numbers of genes,” says Rivers. “Once again, runs that would have taken months on a single or dual processor machine, have taken days to run, saving time and allowing for more parameter adjusting without fear of losing large amounts of time.”

Data from Rivers’ analysis recently went into a preliminary grant at NSF from the Althoff lab in the biology department. “It would not have been possible to have those results if OrangeGrid or AVHE did not exist,” says Rivers. “They have allowed for faster data analysis while increasing the competitiveness of submitted grants. In this tight funding climate they can make the difference between being funded and not.”

  • The College of Visual and Performing Arts, in collaboration with ITS, is constructing a rendering “farm” for the speedy calculation of frames from 3D computer animations. The 60-core farm is based on the SideFX Houdini procedural modeling and rendering software, used for such films as “The Hobbit: The Desolation of Smaug” and “Skyfall.” ITS has started discussions with the software vendor to expand this, using either AVHE to gain hundreds of cores, or OrangeGrid to gain thousands. Leveraging compute resources from the AVHE and OrangeGrid will allow students and faculty in the computer art program in VPA’s Department of Transmedia to work on projects of longer duration with higher resolution and detail, and more complex visual effects.
  • The Plourde research group in the Physics Department is using 64 cores in the AVHE to run microwave modeling software, including Sonnet and HFSS, to simulate complex superconducting microwave circuits. Following the simulations, the group then microfabricates these structures and measures them at temperatures near absolute zero. The computing power available with the AVHE allows the Plourde group to simulate large circuit layouts rapidly.

For more information on research computing at SU, including how to put it to work on a research project, contact Eric Sedore at 315-443-3534 or essedore@syr.edu.

  • Author

Christopher C. Finkle

  • Recent
  • Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering
    Sunday, May 18, 2025, By Alex Dunbar
  • Summer Snacking: What to Try on Campus
    Sunday, May 18, 2025, By Jennifer DeMarchi
  • ’Cuse Collections Items Donated to Community Through Local Organizations
    Sunday, May 18, 2025, By Lydia Krayenhagen
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan

More In Campus & Community

Summer Snacking: What to Try on Campus

As the Syracuse campus transitions into the Maymester and Summer Sessions, Campus Dining reminds students, faculty and staff remaining on campus that some of their locations remain open throughout the summer months for all of their breakfast, lunch and snacking…

’Cuse Collections Items Donated to Community Through Local Organizations

Over 30 bins of items were donated by students to ’Cuse Collections, an event hosted by Sustainability Management that provides the items to local community groups. Containers were placed on North Campus and South Campus to provide Syracuse University and…

Falk College Sport Analytics Students Win Multiple National Competitions

“I think the Rolls-Royce of Falk College, undoubtedly, is the analytics program,” said David Falk, benefactor of the Falk College of Sport and Human Dynamics, to a room of senior sport analytics students and their families during their capstone poster…

Auxiliary Services Announces Vending Services Transition

Auxiliary Services has announced a new service approach for campus vending services. In the initial phase of the transition, which began May 12, Servomation, a Central New York-based vending services company, assumed operation of all existing campus vending equipment. Snacks…

Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU

Syracuse University has received a $100,000 endowed scholarship from the Live Like Liam Foundation in support of the School of Education’s InclusiveU program. This meaningful gift will expand access to the University’s flagship program for students with intellectual and developmental…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.