Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Campus & Community
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
Campus & Community

‘Unsteady Vortex Formation of Low-Aspects-Ratio, Bio-Inspired Propulsors’

Wednesday, October 31, 2012, By News Staff
Share

Department of Mechanical and Aerospace Engineering Seminar

Friday, Nov. 2, 2:15-3:10 p.m., Watson Theatre, Watson Hall

Dr. Matthew Ringuette
Department of Mechanical & Aerospace Engineering
The State University of New York at Buffalo

In recent years substantial effort has been focused on understanding animal propulsion, e.g., that of fish, insects and birds. The application is small, highly maneuverable bio-inspired autonomous vehicles used for information gathering. The Reynolds number (Re) range is 102–104, and this coupled with low aspect ratio (AR) propulsors at high angles of attack creates flows dominated by separation and unsteady, 3-D vortex formation. More research is needed to understand the time-varying flow structure and its relationship to the forces. The focus of this talk is the characterization of these vortex flows using experiments with very simplified models and motions, which nonetheless produce highly complex flow structures and provide substantial insight. Two cases are considered, a rigid trapezoidal fin executing a rotational
starting motion, and rigid flat-plate wings rotating from rest; the latter is a simplified hovering half-stroke. The diagnostics are dye visualization, particle image velocimetry (PIV) and force measurements.

The fin generates a symmetrical ring-like vortex dominated by the tip vortex (TV), and substantial root-to-tip velocity. For large rotational amplitudes, the vortex sheds and a secondary one is generated while the plate is still moving, indicating saturation of the first. For different velocity programs, the TV circulation exhibits saturation as plateaus. Its behavior is complex due to an interaction with the root-to-tip flow, so a range of saturation times is defined. The lower bound indicates the initial TV pinch-off, and is reasonably predicted by a simple scaling.

The rotating-wing experiments focus on AR effects. Rectangular wings of AR = 2 and 4 with a fixed angle of attack of 45° are tested in a glycerin-water mixture, with a matched Retip = 5,000. The time-varying, 3-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic PIV in multiple chordwise planes. For both ARs the flow is initially a vortex loop consisting of a leading-edge vortex (LEV), the TV and the trailing-edge vortex. The AR = 2 case has greater spanwise velocity and a more helical LEV. After about 20° of rotation, the outboard LEV for each AR lifts up and is arch-like. For AR = 4 this is progressive and followed by breakdown. The AR = 2 flow is more coherent, and the greater influence of the TV contributes to a stronger flux of LEV vorticity to the tip, which mitigates lift-off.
Inboard the LEV is “stable,” and for both ARs has similar spanwise velocity and vorticity flux distributions. The AR = 2 lift coefficient shows a higher growth after startup.

Contact Person: Kathy Datthyn-Madigan, kjdatthy@syr.edu

  • Author

News Staff

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In Campus & Community

Falk College Sport Analytics Students Win Multiple National Competitions

“I think the Rolls-Royce of Falk College, undoubtedly, is the analytics program,” said David Falk, benefactor of the Falk College of Sport and Human Dynamics, to a room of senior sport analytics students and their families during their capstone poster…

Auxiliary Services Announces Vending Services Transition

Auxiliary Services has announced a new service approach for campus vending services. In the initial phase of the transition, which began May 12, Servomation, a Central New York-based vending services company, assumed operation of all existing campus vending equipment. Snacks…

Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU

Syracuse University has received a $100,000 endowed scholarship from the Live Like Liam Foundation in support of the School of Education’s InclusiveU program. This meaningful gift will expand access to the University’s flagship program for students with intellectual and developmental…

Dara Drake ’23 Named the University’s First Knight-Hennessy Scholar

Alumna Dara Drake ’23 has been named as a 2025 Knight-Hennessy Scholar, the first from Syracuse University. Knight-Hennessy Scholars is a multidisciplinary, multicultural graduate scholarship program at Stanford University. Each Knight-Hennessy scholar receives up to three years of financial support…

Years of Growth Fueled Women’s Club Ice Hockey Team to Success

The trajectory of the Syracuse University women’s club ice hockey team is what Hollywood makes movies about. “When I joined [in Fall 2021] there were only six other people on the team,” says Amanda Wheeler, a senior at SUNY College…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.