Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit

Syracuse University physicists first to observe rare particles produced at the Large Hadron Collider at CERN

Monday, March 28, 2011, By News Staff
Share
research

Shortly after experiments on the Large Hadron Collider (LHC) at the CERN laboratory near Geneva, Switzerland, began yielding scientific data last fall, a group of scientists led by a Syracuse University physicist became the first to observe the decays of a rare particle that was present right after the Big Bang. By studying this particle, scientists hope to solve the mystery of why the universe evolved with more matter than antimatter. 

LHCLed by Sheldon Stone, a physicist in SU’s College of Arts and Sciences, the scientists observed the decay of a special type of B meson, which is created when protons traveling at nearly the speed of light smash into each other. The work is part of two studies published in the March 28 issue of Physics Letters B. Stone leads SU’s high-energy physics group, which is part of a larger group of scientists (the LHCb collaboration) that run an experiment at CERN. The National Science Foundation (NSF) funds Stone’s research group. 

“It is impressive to see such a forefront physics result produced so soon after data-taking commenced at the LHC,” says Moishe Pripstein, program director for the NSF’s Elementary Particle Physics program. “These results are a tribute both to the ingenuity of the international collaboration of scientists and the discovery potential of the LHC.” 

Scientists are eager to study these special B mesons because of their potential for yielding information about the relationship between matter and antimatter moments after the Big Bang, as well as yet-to-be-described forces that resulted in the rise of matter over antimatter.

“We know when the universe formed from the Big Bang, it had just as much matter as antimatter,” Stone says. “But we live in a world predominantly made of matter, therefore, there had to be differences in the decaying of both matter and antimatter in order to end up with a surplus of matter.” 

All matter is composed of atoms, which are composed of protons (positive charge), electrons (negative charge) and neutrons (neutral). The protons and neutrons are composed, in turn, of even smaller particles called quarks. Antimatter is composed of antiprotons, positrons (the opposite of electrons), antineutrons and thus anti-quarks. While antimatter generally refers to sub-atomic particles, it can also include larger elements, such as hydrogen or helium. It is generally believed that the same rules of physics should apply to both matter and antimatter and that both should occur in equal amounts in the universe. That they don’t play by the same rules or occur in equal amounts are among the greatest unsolved problems in physics today. 

B mesons are a rare and special subgroup of mesons composed of a quark and anti-quark. While B mesons were common after the Big Bang, they are not believed to occur in nature today and can only be created and observed under experimental conditions in the LHC or other high-energy colliders. Because these particles don’t play by the same rules of physics as most other matter, scientists believe B mesons may have played an important role in the rise of matter over antimatter. The particles may also provide clues about the nature of the forces that led to this lack of symmetry in the universe. 

“We want to figure out the nature of the forces that influence the decay of these [B meson] particles,” Stone says. “These forces exist, but we just don’t know what they are. It could help explain why antimatter decays differently than matter.” 

In 2009, SU’s experimental high-energy physics group received more than $3.5 million from the NSF through the American Recovery and Reinvestment Act (ARRA) for its research as part of the LHCb collaboration at CERN. The LHCb, one of four large particle detectors located in the LHC ring, is dedicated to searching for new types of fundamental forces in nature.

  • Author

News Staff

  • Recent
  • IVMF Advisory Board Welcomes New Additions
    Monday, January 18, 2021, By News Staff
  • Syracuse Stage Announces Changes to the 2020/2021 Season
    Sunday, January 17, 2021, By Joanna Penalva
  • Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation
    Sunday, January 17, 2021, By Dan Bernardi
  • Important Information Regarding Proof of Eligibility for and Access to the COVID Vaccine
    Saturday, January 16, 2021, By News Staff
  • COVID-19 Update: Vaccination | Testing | Important Reminders | Zoom Sessions
    Friday, January 15, 2021, By News Staff

More In Uncategorized

Danielle Smith writes “Images of the Capitol Riot Reflect a National Crisis.”

Danielle Smith, professor of African American studies in the College of Arts and Sciences and Director of the Renée Crown University Honors Program, wrote an op-ed for History News Network titled “Images of the Capitol Riot Reflect a National Crisis.”…

“Syracuse University Leads City-Wide Tutoring Effort Amid COVID-19.”

Brice Nordquist, associate professor and Dean’s Professor of Community Engagement in the College of Arts and Sciences, was interviewed by WYSR TV for the story “Syracuse University Leads City-Wide Tutoring Effort Amid COVID-19.” Nordquist, who studies the intersections of literacy…

Syracuse Views Fall 2020

We want to know how you experience Syracuse University. Take a photo and share it with us. We select photos from a variety of sources. Submit photos of your University experience using #SyracuseU on social media, fill out a submission…

2022 Senior Class Marshal Application Now Open

A prestigious honor bestowed upon two seniors each year, the Division of Enrollment and the Student Experience is actively seeking applications and nominations for the Class of 2022 senior class marshals. The deadline to apply is Sunday, Jan. 31. “Our…

Nina Kohn’s research featured in “Britney Spears’ conservatorship can be both totally legal and quite bad for her. Many are.”

The research of Nina Kohn, the David M. Levy Professor of Law and Faculty Director of Online Education in the College of Law, was cited in the NBC News opinion piece “Britney Spears’ conservatorship can be both totally legal and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.