Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Machine Learning Gives Visibility to Underrepresented Authors

Wednesday, March 27, 2024, By Dan Bernardi
Share
College of Arts and SciencesGraduate SchoolresearchResearch and Creative

While fingerprint powder and microscopes are very important tools in forensics, machine learning is becoming one of the fastest emerging technologies in the field. This involves the use of algorithms and computing to perform efficient and effective investigations by analyzing large and complex sets of data. The College of Arts and Sciences’ Forensic and National Security Sciences Institute (FNSSI) offers customized courses designed to equip students with the skills to examine these problems using computational methods and algorithms.

CodingOne specific course, titled “Computational Forensics,” introduces students to coding, machine learning and artificial intelligence (AI). Taught by Filipe Augusto da Luz Lemos, courtesy research professor and a leading expert in digital forensics, the curriculum teaches students how machine learning and AI are utilized in the field. A highlight for students taking this course is the final project, where they select a real-world problem that they are passionate about and solve it using computational techniques learned in class. The assignment culminates with a presentation where they share their solution to the chosen problem.

Brianna Cardillo

Brianna Cardillo

Brianna Cardillo, a graduate student in forensics, focused her work on one of her favorite hobbies – reading. Her project, “What to Read Next? Using Historical Reader Preferences to Promote Books from Marginalized Authors,” aimed to develop a machine learning algorithm that could suggest books, with a specific focus on promoting works by underrepresented writers.

“I’ve been in social media spaces surrounding reading and creatively writing books for a long time now, and I really became aware of just how much diversity people’s reading preferences lacked,” says Cardillo. “I have read so many books from authors like Faridah Àbíké-Íyímídé that had such incredible world-building and portrayed such important themes, books that deserved more praise than they got.”

To address this inequity, Cardillo developed an algorithm which suggests books based upon readers’ interests. It takes into account information like genre, length, average rating on the book recommendation site Goodreads, and authors’ race, which she gathered from personal interviews, blog posts and book jackets. She organized this data into Excel spreadsheets and input the information into a machine learning algorithm. Simply put, the algorithm is a content-based filtering system which considers what readers enjoy and calculates whether they will enjoy other books by underrepresented authors based on those interests.

Professor Filipe Augusto da Luz Lemos

Filipe Augusto da Luz Lemos

“Increasing awareness of marginalized authors requires readers to actively choose and promote diverse stories, especially since we have so much influence over publishing with how we use our dollars,” says Cardillo. “That’s why I wanted to make the algorithm in the first place, with the hope that this could be part of that first step.”

While she primarily focused on race when developing this version of the algorithm, Cardillo would like to one day expand it to include multiple categories of marginalization alongside race, like sexuality or disability status.

“I would love to include authors of many different identities so that everyone can find books where they feel represented,” she says.

Lemos notes that Cardillo’s work on this project exemplifies the goals and strengths of this course, which involve solving contemporary issues with computational methods that would be impractical or time-consuming for humans to compute manually.

“Throughout this project, Brianna honed her ability to identify and analyze problems, determining their suitability for machine learning solutions,” says Lemos. “Brianna’s work not only engaged with her personal interest, but also tapped into a broader societal relevance.”

He explains that the skills Cardillo and other students developed during this project are directly transferable to a professional setting, especially in the field of forensics.

“This project taught students to efficiently identify problems that can be expedited or improved through computational approaches and to create algorithms that can identify patterns where humans would not be able to,” Lemos says. “Additionally, they gain the capability to design algorithms that automate mundane tasks, thereby optimizing productivity so that investigators can focus on more complex, impactful work.”

After graduating this May with an M.S. in forensic science, Cardillo hopes to gain employment in a crime laboratory as a forensic DNA analyst. In such a fast-paced environment, the ability to think creatively and solve problems quickly is a must.

“In that type of work, things will not always go to plan,” says Cardillo. “Sometimes instruments stop working, and it will require creative thinking to find solutions, especially to problems that are not so clear cut. I think this project has prepared me for that, and I know that when these problems happen, I will be able to work through them well.”

  • Author

Dan Bernardi

  • Recent
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.