Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biology Professor Investigates Polar Bear Paw Design Principles

Friday, January 6, 2023, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesDepartment of BiologyResearch and CreativeSTEM

stock image of a polar bear

Using the solutions observed in nature to address global challenges in health, medicine and materials innovation is at the heart of research by BioInspired Syracuse. Austin Garner, assistant professor of biology and member of BioInspired, specializes in functional morphology—studying the form and function of animals and then applying it to bio-inspired designs in a wide range of applications.

Garner recently co-authored a paper in the Journal of the Royal Society Interface exploring design principles on polar bear paws, which allow them to have better traction on ice compared to other bear species. The work identifies a new nature-based method that could be incorporated into human engineering challenges associated with traction, namely for products that slip on snow and ice such as tires and shoes.

Garner took part in the research as a Ph.D. student at the University of Akron. His collaborators were Ali Dhinojwala, the H.A. Morton Professor of Polymer Science in Akron’s School of Polymer Science and Polymer Engineering, and Nathaniel Orndorf, a 2022 Ph.D. graduate from Akron who now works as a senior material scientist at the tire company Bridgestone Americas.

Profilometry scan of bear paw prints

The team scanned bear paw prints using a surface profilometer to evaluate their features

They used actual samples and replicas of bear paw pads from museums, taxidermists and other collections, and imaged them using a scanning electron microscope and a surface profilometer, instruments that can measure surface texture and features. The team also created 3D printouts of the structures to vary diameter and height of features and tested them in the lab to see how they reacted to snow conditions.

The group specifically studied the hard bumps on the foot pads of bear paws called papillae, which have long been thought to help them grip ice and keep from slipping. The team discovered that the papillae on polar bears were taller than other species—up to 1.5 times. Importantly, the taller papillae of polar bears help to increase traction on snow relative to shorter ones.

Even though polar bears have smaller paw pads compared to the other species (likely because of greater fur coverage for heat conservation), the taller papillae of polar bears compensate for their smaller paw pads, giving them a 30-50% increase in frictional shear stress—or lateral grip.

“This is exciting interdisciplinary work that studied a long-held belief that the micro-structures on polar bear paw pads were an adaptation to increase traction on ice and snow,” says Garner. “Our work shows that the papillae themselves are not an adaptation for this because other bears have them, but the unique dimensions of polar bear papillae do confer an advantage in traction.”

The team now hopes that other scientists and manufacturers can apply their research to product design. For example, snow tires now have deeper treads than all-season tires, but this research could also suggest design modifications for increased traction.

Read the team’s full paper, “Polar bear paw pad surface roughness and its relevance to contact mechanics on snow,” in the Journal of the Royal Society Interface.

  • Author

Dan Bernardi

  • Recent
  • Whitman’s Johan Wiklund Named a Top Scholar Globally for Business Research Publications
    Tuesday, June 17, 2025, By Caroline K. Reff
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • On Your Mark, Get Set, Go Orange! Faculty and Staff at the Syracuse WorkForce Run (Gallery)
    Thursday, June 12, 2025, By News Staff
  • Oren Lyons Jr., Roy Simmons Jr. Honored With Alfie Jacques Ambassador Award
    Wednesday, June 11, 2025, By John Boccacino
  • McDonald Assumes New Role as Associate Vice President for Research
    Wednesday, June 11, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.