Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Nature-Inspired Designs Could Offer Solutions for Global Challenges

Thursday, January 5, 2023, By News Staff
Share
BioInspiredCollege of Arts and SciencesCollege of Engineering and Computer ScienceNational Science FoundationResearch and Creative

Bioinspired research draws from the natural world to develop solutions for global challenges. But it can be difficult to turn these research ideas into actual materials and methods that can be applied to real world problems in areas like construction, energy and health care. That’s why Lisa Manning, the William R. Kenan, Jr. Professor of Physics and director of the BioInspired Institute at Syracuse University, led a workshop in Cambridge, Massachusetts, in October to explore new paths to transform this research into industry applications.

“We always want to think about how to take our discoveries and figure out how to make them useful to the world,” Manning says. “But, as scientists and engineers in academia, it’s not always easy to translate research into products that are ready for market ourselves.”

She explains that one of the greatest challenges can be developing low-cost, large-scale models for widespread use.

Professor Lisa Manning giving a presentation

Physics Professor Lisa Manning leading a discussion at the Convergence Accelerator workshop in Cambridge, Massachusetts. (Photo courtesy of the Wyss Institute at Harvard University)

Manning’s leadership role reflects the national recognition that Syracuse’s BioInspired Institute has earned since it was founded in 2019. The BioInspired Institute includes faculty from across life sciences, engineering, physics and chemistry–and stands out as an example of interdisciplinary collaboration happening at Syracuse.

To help address the nationwide need for translatable outcomes from basic research, Manning helped organize a workshop sponsored by the National Science Foundation (NSF) as part of its Convergence Accelerator program, which funds interdisciplinary collaboration–or convergence–to advance innovative solutions for the most pressing issues. NSF identified bioinspired design as a promising candidate for this program and tapped Manning to lead a workshop to explore its potential. Manning will be lead author on a national report that will outline why bioinspired design is an ideal field to advance through this program. If successful, bioinspired design would be named into the next cohort of Convergence Accelerator tracks.

“Bioinspired design has many applications across a wide range of industries including medicine, manufacturing, energy and sustainability,” she explains. “There’s a large group of scientists and engineers that are already working in this space but rarely interact with one another–and it’s clear that convergent interactions between these groups could drive innovation. The NSF Convergence Accelerator could fast-track this research and discovery into applied uses.”

Examples of bioinspired designs include hybrid biomaterials that can stimulate wound healing and serve as scaffolds for engineered tissues, climate-friendly manufacturing of cells and proteins, color-changing materials inspired by butterfly wings, systems for energy harnessing and storage that are inspired by living systems, and autonomous robot swarms modeled after schools of fish that can be used for environmental and infrastructure monitoring, like engine inspections and tidal patterns.

Researchers gather to talk about the potential to advance bioinspired design.

Leading researchers gathered to talk about the potential to advance bioinspired design through NSF’s Convergence Accelerator program. (Photo courtesy of Jeremy Steinbacher)

The workshop connected 40 different stakeholders with diverse interests across bioinspired design– including researchers and policymakers from academic, nonprofit, government and other institutions, and representatives of organizations like nonprofit research group Chan-Zuckerberg Biohub, biotech firm Gingko Bioworks and federally funded bioindustrial manufacturing research institute BioMADE. Participants met to identify the most promising opportunities for translating bioinspired research into industry applications–and the most difficult barriers to doing so, such as funding or prototyping. And they identified some of the most advanced current research projects that could offer benefits in the next few years if accelerated through this program.

“There’s a huge opportunity to promote translational work and ignite bioinspired design efforts across the nation,” she says.

Syracuse’s Mary Beth Browning Monroe, assistant professor of biomedical and chemical engineering in the College of Engineering and Computer Science, also attended the workshop. Monroe specializes in using bioinspired design to create materials for treating wounds that stop bleeding more quickly and promote longer-term healing. She collaborates with military and civilian clinicians with a goal of translating her technologies into improved options for traumatic and chronic wounds.

Manning will continue to spearhead follow-up work from the group, including the NSF report, which Manning expects to submit before the end of the year. The NSF will then review it as it selects its next cohort of Convergence Accelerator tracks. If bioinspired design becomes a Convergence Accelerator track, research teams will be able to apply for NSF grants and participate in programming to learn how to bring products to market.

This story was written by Emily Halnon.

  • Author

News Staff

  • Recent
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • Whitman’s Johan Wiklund Named a Top Scholar Globally for Business Research Publications
    Tuesday, June 17, 2025, By Caroline K. Reff
  • Katsitsatekanoniahkwa Destiny Lazore ’26 Receives Prestigious Udall Scholarship
    Tuesday, June 17, 2025, By Jen Plummer
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.